Using beams of reclaimed ^{44}Ti to explore the mechanism of core collapse in supernovae

Jennifer Fallis
For the TRIUMF-^{44}Ti Collaboration
Road map

• 44Ti production in supernovae & importance of 44Ti(α,p)47V

• Creating beams of 44Ti at TRIUMF

• Planned and other possible measurements:
 - 44Ti(α,p) @ TUDA
 - 44Ti(α,\gamma) @ DRAGON
 - 44Ti(p,\gamma) @ DRAGON
 ... and EMMA?

• TRIUMF implantation station
Supernova observables

- Supernovae explosions are incredibly complex and most observables are very general, resulting from the overall features of the explosion.
 - Light curves - include all energy given off as photons.
 - Spectroscopy provides elemental abundances, but only measures the total number of all isotopes of any given element.
- Observations of individual isotopes are particularly useful for comparing models to observations
 - presolar grains
 - γ-ray telescope observations

- Accurate models, however, need precise reaction rates to be sufficiently constrained.
44Ti production

In neutrino driven explosions:

44Ti is synthesized in the α-rich freeze out that occurs in the shock-heated Si layer that lies just above the detonating core and so the amount ejected sensitively depends on location of the ‘mass cut’

- Material that ‘falls back’ is not available for detection
- 44Ti yield a sensitive diagnostic of the explosion mechanism
- Thus, VERY useful for models to make comparisons against

And αp-rich freeze out

Timmes et al. (1996)
Most important reactions determined from sensitivity studies

<table>
<thead>
<tr>
<th>Magkotsios et al. (2010):</th>
<th>The et al. (1998):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{44}\text{Ti}(\alpha,p)^{47}\text{V}$</td>
<td>$^{44}\text{Ti}(\alpha,p)^{47}\text{V}$</td>
</tr>
<tr>
<td>$^{40}\text{Ca}(\alpha,\gamma)^{44}\text{Ti}$</td>
<td>$^{45}\text{V}(p,\gamma)^{46}\text{Cr}$</td>
</tr>
<tr>
<td>$^{45}\text{V}(p,\gamma)^{46}\text{Cr}$</td>
<td>$^{40}\text{Ca}(\alpha,\gamma)^{44}\text{Ti}$</td>
</tr>
<tr>
<td>$^{40}\text{Ca}(\alpha,p)^{43}\text{Sc}$</td>
<td>$^{57}\text{Co}(p,n)^{57}\text{Ni}$</td>
</tr>
<tr>
<td>$^{17}\text{F}(\alpha,p)^{20}\text{Ne}$</td>
<td>$^{36}\text{Ar}(\alpha,p)^{39}\text{K}$</td>
</tr>
<tr>
<td>$^{21}\text{Na}(\alpha,p)^{24}\text{Mg}$</td>
<td>$^{44}\text{Ti}(\alpha,\gamma)^{48}\text{Cr}$</td>
</tr>
<tr>
<td>$^{41}\text{Sc}(p,\gamma)^{44}\text{Ti}$</td>
<td>$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$</td>
</tr>
<tr>
<td>$^{44}\text{Ti}(p,\gamma)^{45}\text{V}$</td>
<td>$^{57}\text{Ni}(p,\gamma)^{58}\text{Cu}$</td>
</tr>
<tr>
<td>$^{57}\text{Ni}(p,\gamma)^{58}\text{Cu}$</td>
<td>$^{58}\text{Cu}(p,\gamma)^{59}\text{Zn}$</td>
</tr>
<tr>
<td>$^{43}\text{Sc}(p,\gamma)^{44}\text{Ti}$</td>
<td>$^{36}\text{Ar}(\alpha,\gamma)^{40}\text{Ca}$</td>
</tr>
<tr>
<td>Measured at TRIUMF with DRAGON</td>
<td>$^{44}\text{Ti}(p,\gamma)^{45}\text{V}$</td>
</tr>
<tr>
<td>Letter of intent submitted, but this is a challenging beam to produce</td>
<td>$^{57}\text{Co}(p,\gamma)^{58}\text{Ni}$</td>
</tr>
<tr>
<td></td>
<td>$^{57}\text{Ni}(n,\gamma)^{58}\text{Cu}$</td>
</tr>
<tr>
<td></td>
<td>$^{54}\text{Fe}(\alpha,n)^{57}\text{Ni}$</td>
</tr>
</tbody>
</table>
Experimental data for 44Ti(α,p)

Only measurements are by Sonzogni et al. [PRL 84 (2000)]:

- 4 data points
- Energies higher than those required to study the reaction at astrophysically relevant temperatures
Experimental data for 44Ti(α,p)

Only measurements are by Sonzogni et al. \cite{PRL 84 (2000)}:

- 4 data points
- Energies higher than those required to study the reaction at astrophysically relevant temperatures
- Found a rate 2x higher than the SMOKER rates.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{ANL-P-22,592}
\end{figure}
Experimental data for $^{44}\text{Ti}(\alpha,p)$

Only measurements are by Sonzogni et al. [PRL 84 (2000)]:

- 4 data points
- Energies higher than those required to study the reaction at astrophysically relevant temperatures
- Found a rate 2x higher than the SMOKER rates.
- Hoffman et al., [ApJ 715 (2010)] recalculated a rate from this data & find a rate consistent with NON-SMOKER within uncertainties
How to measure $^{44}\text{Ti}(\alpha,p)^{47}\text{V}$:

- ^{44}Ti targets?
 - ^{44}Ti targets? \leftarrow Tariq’s talk this morning

- ^{44}Ti beams?
 - ^{44}Ti beams? difficult to produce and extract
 - On-line production using the ISOL technique followed by immediate acceleration
 - On-line production using fragmentation.

- Off-line production using an enriched source of ^{44}Ti, available through the ERAWAST program in the TRIUMF off-line ion source
The plan for ^{44}Ti beams off-line: Supernanogan

- ISAC-I accelerator limited to $A/q \leq 6$.
- Use of a stripping foil can provide beams of ions up to $A=30$.
- For beams above $A=30$ high charge states are needed from the source.
- Supernanogan ECR source can provide these high charge states.
- Beam up to $A=150$ from the off-line source can now be accelerated.
44Ti (α,p) Requirements

- Previous 44Ti(α,p) experiment: 10^5 pps
- A TUDA measurement 1 MeV lower in energy requires $\sim 10^{12}$ total ions on target
- With $\sim 10^{16}$ atoms available we would require: 0.01% combined source and accelerator efficiency
- More 44Ti and better efficiencies would allow for measurements at even lower energies.
The plan for 44Ti beams off-line: Supernanogan

Source efficiencies depend on the method of acquiring material:

- Gas leak 1 - 10% efficiency
- Sputter source 0.01 - 0.1% efficiency
- Oven ... depends on the properties of the material 0.1% - 1%?
The plan for 44Ti beams off-line

- 44Ti can be provided in the form of TiF$_4$
- TiF$_4$ sublimates at 284°C
- Lessons from recent 33S beam:
 - Melting point 115°C / Boiling point 445°C
 - Didn’t even have to turn on oven to get a good vapour pressure
- There is a possibility of getting up to 1% efficiency out of source when using TiF$_4$.

 ... But this needs testing...
Efficiency tests - Done

Ti wire sputter test:

- Wire produced $\sim 2.7 \times 10^8$ pps $^{48}\text{Ti}^+$ at the source cup
- Ran for 5 days
- ^{48}Ti is 74% of natural abundance
- No measured difference in Ti wire weight after the test (0.1mg scale)

∴ Minimum sputter efficiency was 0.017%

Good enough… but not great
Efficiency tests - planned

- **The Problems:**
 - putting a small enough sample in the Supernanogan to use it up in the time available for beam development
 - Knowing how much material was in the sample

- **The Solution:**
Efficiency tests - planned

- **The Problems:**
 - putting a small enough sample in the Supernanogan to use it up in the time available for beam development
 - Knowing how much material was in the sample

- **The Solution:** using a small amount of a low concentration solution of TiF$_4$ in water.
 - An oven for TiF$_4$ tests has been ordered
 - TiF$_4$ needs to be acquired
 - Hope to run in winter shutdown (late Dec. - early Apr.)
- ^{44}Ti is radioactive, $t_{1/2}=\sim60$ y
- No other radioactive isotope ever used in OLIS

+ ^{14}C experiment also has "stage 1" approval (join forces)

+ ^{44}Ti beam was produced from an ECR source at Argonne National Lab.
TRIUMF - ISAC I and II

ISAC I:
150 keV/u - 1.9 MeV/u

ISAC II:
up to 16 MeV/u
The experiments: $^{44}\text{Ti}(\alpha,p)$ at TUDA
The experiments: $^{44}\text{Ti}(\alpha,p)$ at TUDA

^{44}Ti beam

^{47}V and ^{44}Ti stopped in exit window

Gas cell

Up to 200 Torr of He

ΔE E

$\sim 200 \text{ keV}$

p
The experiments: 44Ti(α,p) at TUDA

![Graph showing cross-section vs. E_cm (MeV)]

<table>
<thead>
<tr>
<th>$E_{\text{C.M.}}$ (MeV)</th>
<th>Cross-section (mb)</th>
<th>Events/day</th>
<th># 12 hour shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>195</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

\uparrow With 10^6 pps beams
So, we have a 44Ti beam. What else can we do with it...
44Ti production destruction

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>44Ti(α,p)47V</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>44Ti(α,γ)48Cr</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>44Ti(p,γ)45V</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rates used</td>
<td>NON-SMOKER</td>
<td>SMOKER</td>
</tr>
</tbody>
</table>

Radiative capture
~20-60 keV/u
Charge state booster
(SNi foil, 100nm thick)
Raw suppression for p-capture $10^8 - 10^{10}$

Up to 10^{15} with $\gamma + $H.I. coincidence
Current experimental data for 44Ti(α,\)γ)

(Yes, that’s really all there is...)
Changes between SMOKER and NON-SMOKER codes: result of suppression of \((\alpha,\gamma)\) reactions on self conjugate nuclei due to isospin selection rules.
44Ti (α,γ) Requirements

• for 10^8 pps
 – 6.2 MeV: ~0.6 counts/hr at the end detector.

• for 10^9 pps
 – 6.2 MeV: ~6 counts/hr
 – 4.9 MeV (middle of Gamow window): ~0.4 counts/hr

• For 10^{10} pps
 – 3.6 MeV: ~0.14 counts/hr
Current experimental data for 44Ti(p,γ)

(... nothing here either ...)
(p,γ) separation?

- Ran a test with $^{58}\text{Ni}(p,\gamma)^{59}\text{Cu}$ in April at 1.4 MeV/u:
 - Avg. beam suppression in ‘singles’ mode $\sim 1.2\times10^8$
 - Avg. beam suppression in ‘coincidence’ mode $\sim 3.0\times10^{10}$
NON-SMOKER cross sections for 44Ti(p,γ)

Beams of 10^7 pps
ISAC-I beam energies: 150 keV/u - 1.9 MeV/u

$^{44}\text{Ti}(\alpha,\gamma)$: (for upper limit of Gamow window at 3 GK)

\[E_{\text{res}} = 6.2 \text{ MeV} \]
\[E_{\text{beam}} = 1.69 \text{ MeV/u} \]

$^{44}\text{Ti}(p,\gamma)$: (for the middle of the Gamow window at 3 GK)

\[E_{\text{res}} = 1.87 \text{ MeV} \]
\[E_{\text{beam}} = 1.9 \text{ MeV/u} \]

This is the upper limit of E_{beam} to DRAGON. To measure radiative capture rates for higher temperatures…
EMMA (ElectroMagnetic Mass Analyser)

But not yet assembled or commissioned

CH₂ target

PGAC, IC, Si detector, etc…
Summary of The Plan

- Test the efficiency of TiF$_4$ from Supernanogan
- Acquire safety approval
 Feasible on a ~1 yr time scale
- Run 44Ti(\(\alpha\),p)47V at TUDA
 Possibly 2013 if all goes very well
- Measure 44Ti(p,\(\gamma\))45V at DRAGON
 Not too much of a stretch
- Guided by TUDA results, confirm or deny the NON-SMOKER rate for 44Ti(\(\alpha\),\(\gamma\))48Cr at DRAGON
Collaborators

TRIUMF: J. Fallis, C. Ruiz, D. Hutcheon
U. Edinburgh: A. St.J. Murphy, G. Lotay, P. J. Woods,
 M. Aliotta, T. Davinson, D. Mountford,
 G. Lotay, A. Shotter
U. York: B. R. Fulton, A. M. Laird, M. Taggart, S. Fox,
 C. A. Diget, M. Bently, J. Brown, P. Adsley
SFU: J. M. D’Auria
UNBC: A. Hussein
CSM: U. Greife, U. Hager
TU-Munich: S. Bishop, A. Parikh, C. Vockenhuber
ANL: J. Clark, C. Deibel
Now on to the target implantation station at TRIUMF....
Direct measurement of $^{22}\text{Na}(p,\gamma)^{23}\text{Mg}$

- TRIUMF-CENPA (U. Wash) proposal
- High-quality, high-density ^{22}Na target fabricated at ISAC
- Chamber designed at TRIUMF, built at CENPA
- (p,γ) run at CENPA

Stronger resonance strengths measured: reaction rate much higher: reduction in net $^{22}\text{Na} \Rightarrow$ changes detectability distance of novae by factor 2!
Why Implant?

- 26Al experiment - S1200 26Al(n,p)26Mg, 26Al(n,α)23Na, core-collapse supernovae TRIUMF-LANL
 - Require high-quality 1×10^{16} cm$^{-2}$ target, implanted at shallow depth so recoils from (n,p) and (n,α) reactions can be observed
 - Need high-intensity low-velocity 26Al beam
- Future RIBs
 - Many medium-to-long-lived isotopes for implantation for similar neutron-induced experiments, for astrophysical s-process studies – & possibly recovered 44Ti in ISAC ion source
- Custom α-sources
- Target uniformity
 - 26Al targets being used also for charged-particle experiments - important to have uniformity \Rightarrow beam raster
- Safe handling
 - Targets can be fragile, need to be vented and handled with care (and with min. exposure)

Simulations determined optimum raster efficiency and uniformity achieved for 2mm FWHM beam at typical target diameters

29 kV ISAC beam optics for implant location
• Dedicated HV and dry vacuum with UHV specs
• Slow pump/vent for thin foils
• 1×10^{-8} Torr operating pressure
• Commissioned May 2011 with ^{26}Al test target, 2×10^{15} at/cm2
• Treated as a User Facility – each use is an experiment requiring proposal to TRIUMF EEC
• Highly customized target holders can be used
• Now available for public usage