Stellar Production and Destruction Rates of 60Fe

September 2nd, 2011

Tanja Heftrich1, Ethan Uberseder2, Thomas Aumann4, Konstanze Boretzky3, Michael Heil3, Aleksandra Kelic3, Ralf Plag1, Rene Reifarth1, Valentina Ricciardi3, Haik Simon3, Kerstin Sonnabend1, Helmut Weick3, Michael Wiescher2, and the s389 collaboration

1Goethe University Frankfurt, Germany; 2University of Notre Dame, USA; 3GSI Darmstadt, Germany; 4TU Darmstadt, Germany
• Astrophysical Motivation

• Experimental Setup

• First Results

• Future Plans & Summary
INTEGRAL (INTErnational Gamma RAY Laboratory) observed characteristic ^{60}Co decay lines at 1173 & 1332 keV produced by β-decay from ^{60}Fe

- scaled characteristic distribution of ^{60}Fe along the galactic plane based on $^{60}\text{Fe}/^{26}\text{Al}$ measurements
Nucleosynthesis of the Elements

- Fusion up to iron
- rp-process
- s-process
- p-process
- r-process

proton number

neutron number

Tanja Heftrich
ERAWAST II 2011 - Stellar Production and Destruction Rates of ^{60}Fe
s-process

- slow neutron capture process
- seed isotopes: $^{56}\text{Fe}, ^{57}\text{Fe}, ^{58}\text{Fe}$
- neutron capture and β^- decay
- neutron capture rate is small relative to the beta decay rate
- about 50% of the element abundances beyond iron are produced via s-process
- synthesizing elements between iron & bismuth
Provided we know about the nuclear reaction rates for production and destruction we will get information on:

- temperature & density

\[
\begin{array}{ccc}
\text{protons} & \text{neutrons} \\
\text{stable isotope} & \beta^{-} \text{ unstable isotope} & (n, \gamma) \text{ capture} & \beta^{-} \text{ decay} \\
\hline
56\text{Fe} & 57\text{Fe} & 58\text{Fe} \\
91.754 & 2.119 & 0.282 \\
\end{array}
\]
s-process

- s-process:
 - main component & weak component

- main component:
 - He shell burning phase in AGB stars
 - nuclei with $A = 90 - 209$ are mainly produced
 - 13C(α,n):
 $\rho_n = 10^7 \text{ cm}^{-3}$ at $kT = 5 \text{ keV}$
 \[
 \frac{(n,\gamma) - \text{ratio}}{\beta^- - \text{ratio}} \approx 10^{-4}
 \]
 \[\Rightarrow\]
 no 60Fe production

 - 22Ne(α,n):
 $\rho_n = 10^{11} \text{ cm}^{-3}$ at $kT = 30 \text{ keV}$
 \[
 \frac{(n,\gamma) - \text{ratio}}{\beta^- - \text{ratio}} \approx 2
 \]
 \[\Rightarrow\]
 60Fe production
• weak component
 • massive stars (20-25 M$_\odot$)
 • mainly nuclei A = 56 - 90 are produced

• there are two phases:
 • 1$^{\text{st}}$ phase: He core burning
 $\rho_n = 10^6 \text{ cm}^{-3}$ at kT= 25 keV
 \[
 \frac{(n,\gamma) - \text{ratio}}{\beta^- - \text{ratio}} \approx 10^{-5}
 \]
 \[\Rightarrow \text{no } ^{60}\text{Fe production} \]

 • 2$^{\text{nd}}$ phase: C shell burning
 $\rho_n = 10^{12} \text{ cm}^{-3}$ at kT= 90 keV
 \[
 \frac{(n,\gamma) - \text{ratio}}{\beta^- - \text{ratio}} \approx 10
 \]
 \[\Rightarrow ^{60}\text{Fe production} \]
Production and Destruction of 60Fe

60Fe(β^-):
in progress, new measurements: e.g. talks by
G. Rugel
W. Kutschera et al.
R. Dressler et al.

59Fe(n,\gamma):
extremely difficult

60Fe(\gamma,n):
coulomb dissociation, experiment performed

(n,\gamma)61Fe:
activation experiments
kT = 25 meV
kT = 25 keV
kT = 90 keV
R. Reifarth et al.
next talk
UNIversaLACcelerator:
- length: 120m
- energy of particles: 20% speed of light
 ⇒ 11.4 AMeV
“SchwerIonen“ (heavy ion)-Synchrotron

- pulse duration varies from 1 to 400 µs
- to get higher beam intensity several pulses are injected into SIS
- 90% speed of light \(\Rightarrow \) 1000 AMeV
- this energy can be reached for protons as well as for uranium
FRagment Separator:
- separates the isotopes of interest
- energy of particles: 535 AMeV
- intensities of 10^7 particles/s
- reduction after FRS: 10^4-10^5 particles/s

primary beam: 660 AMeV 64Ni

4 g/cm² Be target
R³B/LAND Setup

Production target

Incoming beam

64Ni

64Ni

60Fe

production target

Land

ALADIN

scintillators (TOF,A/Z)

silicon pin diode (ΔE,Z)

Nal crystal ball

ALADIN

fber detector 1 & 2

drift chamber 1 & 2

protons

scintillator walls
reaction of interest: $^{59}\text{Fe} + n \rightarrow ^{60}\text{Fe} + \gamma$

idea: measure time-reversed process:

$^{60}\text{Fe} + \gamma \rightarrow ^{59}\text{Fe} + n$

Beam Energy: 535 AMeV
Advantages:

experiments with radioactive nuclei are possible

Disadvantages:

• indirect method
 ⇒ needs theoretical input
 ⇒ data for verification

• nuclear interaction must be subtracted

• bad energy resolution which is needed for the \((\gamma,n)\leftrightarrow(n,\gamma)\)

• multipole admixtures must be determined
$^{60}\text{Fe}(\gamma, n)^{59}\text{Fe}$ at $\text{R}^3\text{B/LAND}$ Setup

incoming ^{60}Fe

Pb target

ALADIN

neutrons

outgoing ^{59}Fe

scintillator walls

incoming identification

iron identification

incoming ^{60}Fe

$^{60}\text{Fe} + \gamma \rightarrow ^{59}\text{Fe} + n$

$S_n: 8820 \text{ keV}$

$^{60}\text{Fe}^*$

$^{59}\text{Fe}^*$

^{60}Fe

^{59}Fe

Tanja Heftrich

ERAWAST II 2011 - Stellar Production and Destruction Rates of ^{60}Fe
Incoming Identification

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

- **Incoming** ^{60}Fe
 - Pb target
 - ^{60}Fe, ^{59}Fe, ^{58}Mn

Pb target

ALADIN

- Neutrons
- ^{59}Fe
- Fiber detector 1 & 2
- Scintillator walls

Pos

- t_u, ϵ_u
- t_d, ϵ_d
- t_I, ϵ_I
- t_r, ϵ_r

Scintillator 8
- Plastic scintillator
- 2 photomultipliers
- Time measurement

Position Sensitive Silicon Pin Diode
- 2D position
- Charge Z of a passing heavy ion can be obtained via ΔE (Bethe-Bloch formula)

POS

- Quadratic plastic scintillator
- 4 photomultipliers
- Time measurement

PSP

- Neutrons
- Outgoing ^{59}Fe
- Scintillator 8
- Plastic scintillator
- 2 photomultipliers
- Time measurement

LAND

- Neutrons
- Outgoing ^{59}Fe
- Scintillator walls

- Neutrons
- Outgoing ^{59}Fe
- Scintillator walls

S8

- t_u, ϵ_u
- t_d, ϵ_d

POS

- t_I, ϵ_I
- t_r, ϵ_r

PSP

- Neutrons
- Outgoing ^{59}Fe
- Scintillator walls

LAND

- Neutrons
- Outgoing ^{59}Fe
- Scintillator walls

S8

- Plastic scintillator
- 2 photomultipliers
- Time measurement

POS

- Quadratic plastic scintillator
- 4 photomultipliers
- Time measurement

PSP

- Neutrons
- Outgoing ^{59}Fe
- Scintillator walls

LAND

- Neutrons
- Outgoing ^{59}Fe
- Scintillator walls

INCOMING ^{60}Fe

- Scintillators (TOF, A/Z)
- Silicon pin diode ($\Delta E, Z$)

ALADIN

- Nal crystal ball

Fiber detector 1 & 2

Scintillator walls

59Fe 57Mn

58Mn 60Fe
Incoming Particle Identification

Incoming ^{60}Fe

Pb target

ALADIN

Neutrons

Outgoing ^{59}Fe

Fiber detector 1 & 2

Scintillator walls

Incoming Z

Outgoing ^{59}Fe

^{57}Mn

^{58}Mn

^{60}Fe

Incoming A/Z
Outgoing Z Identification

- Outgoing Z
- Identification

Incoming ^{60}Fe

- Scintillators (TOF, A/Z)
- Silicon pin diode ($\Delta E, Z$)
- Pb target
- Nal crystal ball
- ALADIN
- Neutrons
- Outgoing ^{59}Fe

TFW & **NTF**

- 18 paddles
- 14 paddles
- 8 paddles

LAND

- Scintillator walls

Time of Flight Wall & New Time of Flight Wall

- Ion detector with plastic scintillator and photo-multiplier tubes
- TFW & NTF identify the position, the outgoing Z and the TOF of reaction products
Z \propto \sqrt{E}

Fe Identification TFW included Incoming Cut

mean = 26.0
sigma = 0.2847

Fe Identification NTF included Incoming Cut

mean = 26.0
sigma = 0.2455
Large Area Neutron Detector
- sandwich detector of active & passive material
- 10 planes and every plane contains 20 modules
- 2 x 2 m with a depth of 1 m
- conversion of neutrons into protons via reactions in iron and the secondary protons are detected with plastic scintillators
- good position & time resolution and high efficiency
Neutron Identification

- **Pb target**
- **ALADIN**
- **scintillator walls**

Position of Neutrons

Neutron Identification

- **incoming** ^{60}Fe
- **scintillators (TOF, A/Z)**
- **silicon pin diode ($\Delta E, Z$)**
- **Nal crystal ball**

- **neutrons**
- **outgoing** ^{59}Fe
- **fiber detector 1 & 2**

ERAWAST II 2011 - Stellar Production and Destruction Rates of ^{60}Fe
First Results

Experimental Astrophysics

Goethe-Universität Frankfurt am Main

incoming 60Fe

Pb target

ALADIN

neutrons

outgoing 59Fe

scintillator walls

number of breakup events ≈ 70
a complete measurement is ensured by the determination of:

• mass determination of outgoing particle
 \[\frac{A}{Z} \] values: \(^{59}\text{Fe} \) & \(^{60}\text{Fe} \)

• identification and momentum vector of each ion before reaction

• identification and momentum vector of each ion after reaction

• for energy dependent cross section, the excitation energy needs to be precisely known
 \[\Rightarrow \text{require precise momentum vectors and angles} \]
Doubled Silicon Strip Detector:

- Si sensor size: 72 mm x 40 mm
- thickness: 0.3 mm
- x-plane: 640 strips & y-plane: 384 strips
- measures position of fragments with a resolution of ≈ 110 μm
Grand FIbre detector:
- 480 fibres
- read out by a mask and PSPM
- position resolution ~ 1mm
- used for the reconstruction of the particle trajectory
event 8

deflection angle_{ALADIN} \propto \frac{A}{Z}

ALADIN

Pb target

GFI 1

GFI 2

TFW

2 DSSD’s
• $R^3B/LAND$ setup:
 \[\Rightarrow \text{many observables can be measured e.g.: TOF, position and } \Delta E \]
 \[\Rightarrow \text{other quantities like the excitation energy are only accessible via an event-by-event reconstruction} \]

• the invariant masses of the excited incoming and outgoing systems are given by the following expressions:

\[
M_{\text{inv}}^{\text{incoming}} = m_{\text{projectile}} + E^* \\
M_{\text{inv}}^{\text{outgoing}} = \sqrt{\left(\sum_i E_i \right)^2 + \left(\sum_i p_i \right)^2} \quad i:= \text{fragments in the outgoing channel}
\]
Due to the conservation of the invariant mass, the excitation energy is expressed by:

$$E^* = \sqrt{\sum_i m_i^2 + \sum_{i \neq j} \gamma_i \gamma_j m_i m_j (1 - \beta_i \beta_j \cos \vartheta_{ij}) + E_\gamma - m_{\text{proj}}}$$

⇒ the reconstruction of the excitation energy relies on the identification and tracking of all outgoing species and on the rest mass of the incoming ion
Beams Energy: 535 AMeV

Total virtual photon numbers produced by a 500 AMeV beam impinging on a Pb (Z=82) target
^{60}Fe Excitation energy spectrum

Virtual photon theory

$$\frac{d\sigma_{CD}}{dE_\gamma} = \frac{1}{E_\gamma} n\sigma(\gamma,n)$$

detailed balance

$$\sigma_{(\gamma,n)} = \frac{m_{60\text{Fe}} m_\gamma E_{60\text{Fe},n}}{m_{59\text{Fe}} m_n E_{59\text{Fe},n}} \frac{(2J_{60\text{Fe}} + 1)(2J_\gamma + 1)}{(2J_{59\text{Fe}} + 1)(2J_n + 1)} \sigma_{(n,\gamma)}$$
• steps of the analysis:
 • energy-dependent information about the dissociation cross section $^{60}\text{Fe}(\gamma,n)^{59}\text{Fe}$
 • determination of $^{59}\text{Fe}(n,\gamma)^{60}\text{Fe}$ cross section by the principle of detailed balance

• nucleosynthesis simulations of the late stages of massive stars

• experiment $^{60}\text{Fe}(\gamma,n)^{59}\text{Fe}$ at GSI successfully performed
• analysis in progress
Production and Destruction of 60Fe

60Fe(β^-):
in progress, new measurements: e.g.
S. Söllradl
G. Rugel
W. Kutschera et al.
R. Dressler et al.

59Fe(n,\gamma): extremely difficult

60Fe(\gamma,n):
ocoulomb dissociation, experiment performed

(n,\gamma)61Fe:
activation experiment
kT = 25 meV
kT = 25 keV
kT = 90 keV
R. Reifarth et al.

next talk

this talk
Thank you for your attention!